Search for Nodulation and Nodule Development-Related Cystatin Genes in the Genome of Soybean (Glycine max)
نویسندگان
چکیده
Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development, and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97-245 amino acid residues, different isoelectric points (pI) and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals, and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS)-specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16) was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to nodulation and nodule development. Overall, our results provide useful information or clues for our understanding of the functional diversity of legume cystatin family proteins in soybean nodulation and nodule development and for finding nodule-specific cysteine proteases in soybean.
منابع مشابه
RNA-Seq analysis of nodule development at five different developmental stages of soybean (Glycine max) inoculated with Bradyrhizobium japonicum strain 113-2
Nodule development directly affects nitrogen fixation efficiency during soybean growth. Although abundant genome-based information related to nodule development has been released and some studies have reported the molecular mechanisms that regulate nodule development, information on the way nodule genes operate in nodule development at different developmental stages of soybean is limited. In th...
متن کاملSearch for nodulation-related CLE genes in the genome of Glycine max.
CLE peptides are potentially involved in nodule organ development and in the autoregulation of nodulation (AON), a systemic process that restricts nodule number. A genome-wide survey of CLE peptide genes in the soybean glycine max genome resulted in the identification of 39 GmCLE genes, the majority of which have not yet been annotated. qRT-PCR analysis indicated two different nodulation-relate...
متن کاملGenome Wide Identification and Expression Profiling of Ethylene Receptor Genes during Soybean Nodulation
It has long been known that the gaseous plant hormone ethylene plays a key role in nodulation in legumes. The perception of ethylene by a family of five membrane-localized receptors is necessary to trigger the ethylene signaling pathway, which regulates various biological responses in Arabidopsis. However, a systematic analysis of the ethylene receptors in leguminous plants and their roles in n...
متن کاملRj (rj) genes involved in nitrogen-fixing root nodule formation in soybean
It has long been known that formation of symbiotic root nodules in soybean (Glycine max (L.) Merr.) is controlled by several host genes referred to as Rj (rj) genes, but molecular cloning of these genes has been hampered by soybean's complicated genome structure and large genome size. Progress in molecular identification of legume genes involved in root nodule symbiosis have been mostly achieve...
متن کاملEffect of Phosphorus Nutrition on the Nodulation, Nitrogen Fixation and Nutrient - Use Efficiency of Bradyrhizobium Japonicum – Soybean (glycine Max L. Merr.) Symbiosis
Characterization of nodule growth and functioning, phosphorus status of plant tissues and hostplant growth of nodulated soybean (Glycine max L. Merr.) plants grown under different phosphorus conditions was studied in order to evaluate the role of phosphorus in symbiotic nitrogen fixation. Phosphorus deficiency treatment decreased the whole plant fresh and dry mass, nodule weight, number and fun...
متن کامل